Java 基础 Stream
2023-03-27, by alamide
Java 基础语法 Stream,学习内容来自 《Java 实战(第二版)》
1.使用流进行函数式数据处理
数据就像一条河流:它可以被观测,被过滤,被操作,或者为新的消费者与另外一条流合并为一条新的流(这是别人写的,忘记出处了,是一篇 RxJava 的博客)。
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Dish {
private String name;
private boolean vegetarian;
private int calories;
private Type type;
@Override
public String toString() {
return name;
}
public enum Type {MEAT, FISH, OTHER}
public static List<Dish> getDishes() {
return Arrays.asList(
new Dish("pork", false, 800, Type.MEAT),
new Dish("beef", false, 700, Type.MEAT),
new Dish("chicken", false, 400, Type.MEAT),
new Dish("french fries", true, 530, Type.OTHER),
new Dish("rice", true, 350, Type.OTHER),
new Dish("season fruit", true, 120, Type.OTHER),
new Dish("pizza", true, 550, Type.OTHER),
new Dish("prawns", false, 300, Type.FISH),
new Dish("salmon", false, 450, Type.FISH));
}
}
1.1 筛选
谓词筛选,筛选蔬菜
Dish.getDishes().stream()
.filter(Dish::isVegetarian)
.forEach(System.out::println);
去重
Stream.of(1, 2, 1, 3, 4, 2, 10, 10)
.filter(i -> i % 2 == 0)
.distinct()
.forEach(System.out::println);
取前两个
IntStream.rangeClosed(1, 20)
.limit(2)
.forEach(System.out::println);
1.2 流的切片
对于有序的列表,可以使用 takeWhile
(遇到第一个不符合,停止遍历,返回前面的元素)和 dropWhile
(遇到第一个符合,返回余下的元素)高效的选择流中的元素,两个方法互补
获取热量小于 600,使用 filter 效率不高,需要遍历每一个元素
Dish.getDishes().stream()
.sorted(Comparator.comparingInt(Dish::getCalories))
.takeWhile(d -> d.getCalories() < 600)
.forEach(System.out::println);
获取热量大于 600
Dish.getDishes().stream()
.sorted(Comparator.comparingInt(Dish::getCalories))
.dropWhile(d -> d.getCalories() < 600)
.forEach(System.out::println);
截短流
IntStream.rangeClosed(1, 20)
.limit(2)
.forEach(System.out::println);
跳过元素,skip,与 limit 互补
IntStream.rangeClosed(1, 20)
.skip(2)
.forEach(System.out::println);
1.3 映射
流支持map方法,它会接受一个函数作为参数。这个函数会被应用到每个元素上,并将其映射成一个新的元素。
Dish.getDishes().stream()
.map(Dish::getName)
.forEach(System.out::println);
返回每道菜的菜名长度
Dish.getDishes().stream()
.map(Dish::getName)
.map(String::length)
.forEach(System.out::println);
1.4 流的扁平化
将数组中的字符串拆解为字母,flatMap 将流合并
Stream.of("Hello", "World")
.map(s -> s.split(""))
.flatMap(Arrays::stream)
.toList();
给定两个数字列表,如何返回所有的数对呢?例如,给定列表[1, 2, 3]和列表[3, 4],应该返回[(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)]。为简单起见,你可以用有两个元素的数组来代表数对。
Stream.of(1, 2, 3)
.flatMap(i -> Stream.of(3, 4).map(j -> new int[]{i, j}))
.forEach(ints -> System.out.println(Arrays.toString(ints)));
1.5 查找和匹配
检查谓词是否至少匹配一个元素
final boolean anyMatch = Dish.getDishes().stream().anyMatch(Dish::isVegetarian);
System.out.println(anyMatch);
检查谓词是否匹配所有元素
final boolean anyMatch = Dish.getDishes().stream().allMatch(Dish::isVegetarian);
System.out.println(anyMatch);
final boolean anyMatch = Dish.getDishes().stream().noneMatch(d -> !d.isVegetarian());
System.out.println(anyMatch);
查找元素
final Optional<Dish> any = Dish.getDishes().stream()
.filter(Dish::isVegetarian)
.findAny();
any.ifPresent(System.out::println);
//findFirst 查找第一个
final Optional<Dish> any = Dish.getDishes().stream()
.filter(Dish::isVegetarian)
.findFirst();
any.ifPresent(System.out::println);
1.6 规约
元素求和,相乘,最大,最小
int sum = Stream.of(1, 10, 3, 4, 5).reduce(0, Integer::sum);
int multi = Stream.of(1, 10, 3, 4, 5).reduce(1, (a, b) -> a * b);
Optional<Integer> reduce = Stream.of(1, 10, 3, 4, 5).reduce((a, b) -> a * b);
Optional<Integer> max = Stream.of(1, 10, 3, 4, 5).reduce(Integer::max);
Optional<Integer> min = Stream.of(1, 10, 3, 4, 5).reduce(Integer::min);
1.7 原始类型流特化
要记住的是,这些特化的原因并不在于流的复杂性,而是装箱造成的复杂性——即类似int和Integer之间的效率差异。
IntStream intStream = Transaction.getTransaction().stream()
.mapToInt(Transaction::getValue);
Stream<Integer> integerStream = intStream.boxed();
OptionalInt
,使用 OptionalInt
的原因是可能 Stream
中没有元素
final OptionalInt max = Transaction.getTransaction().stream()
.mapToInt(Transaction::getValue)
.max();
max.ifPresent(System.out::println);
数值范围
IntStream.rangeClosed(1, 3).forEach(System.out::println);
IntStream.range(1, 3).forEach(System.out::println);
1.8 构建流
Stream.of(1, 2, 3).forEach(System.out::println);
Stream<String> empty = Stream.empty();
Stream<String> values =
Stream.of("config", "home", "user")
.flatMap(key -> Stream.ofNullable(System.getProperty(key)));
values.forEach(System.out::println);
int[] numbers = {1, 2, 3, 4, 5};
final IntStream stream = Arrays.stream(numbers);
由文件生成流
try (Stream<String> lines = Files.lines(Paths.get("data.txt"))) {
lines.map(s -> s.split(" ")).flatMap(Arrays::stream).distinct().forEach(System.out::println);
} catch (IOException e) {
}
1.9 由函数生成流:创建无限流
Stream.iterate(0, n -> n + 2)
.limit(10)
.forEach(System.out::println);
//也可以使用下面代码
Stream.iterate(0, n -> n + 2)
.takeWhile(n -> n < 20)
.forEach(System.out::println);
// 不能使用如下代码,无法停止
// Stream.iterate(0, n -> n < 20, n -> n + 2)
// .filter(n -> n < 20)
// .forEach(System.out::println);
//斐波那契数列
String collect = Stream.iterate(new int[]{0, 1}, ints -> new int[]{ints[1], ints[0] + ints[1]})
.limit(10)
.map(ints -> String.valueOf(ints[0]))
.collect(Collectors.joining(", "));
System.out.println(collect);
//小于 20 停止
Stream.iterate(0, n -> n < 20, n -> n + 2)
.limit(10)
.forEach(System.out::println);
//调用方法生成流
Stream.generate(Math::random)
.limit(10)
.forEach(System.out::println);
//斐波那契数列
IntSupplier fib = new IntSupplier() {
private int previous = 0;
private int current = 1;
@Override
public int getAsInt() {
int res = previous;
previous = current;
current += res;
return res;
}
};
IntStream.generate(fib).limit(10).forEach(System.out::println);
2.用流收集数据
2.1 查找流中最大值和最小值
final Optional<Dish> max = Dish.getDishes().stream().max(Comparator.comparing(Dish::getCalories));
max.ifPresent(System.out::println);
// final Integer sum = Dish.getDishes().stream().collect(Collectors.summingInt(Dish::getCalories));
// final Integer sum = Dish.getDishes().stream().mapToInt(Dish::getCalories).sum();
// final double average = Dish.getDishes().stream().collect(Collectors.averagingInt(Dish::getCalories));
final IntSummaryStatistics summaryStatistics = Dish.getDishes().stream().collect(Collectors.summarizingInt(Dish::getCalories));
final long sum = summaryStatistics.getSum();
final double average = summaryStatistics.getAverage();
final int max = summaryStatistics.getMax();
final int min = summaryStatistics.getMin();
final long count = summaryStatistics.getCount();
log.info("sum: {}, average: {}, max: {}, min: {}, count: {}", sum, average, max, min, count);
2.2 连接字符串
//拼接成字符串
final String shortMenu = Dish.getDishes().stream().map(Dish::getName).collect(Collectors.joining(", "));
2.3 分组
//分组
final Map<Dish.Type, List<Dish>> typeListMap = Dish.getDishes().stream().collect(Collectors.groupingBy(Dish::getType));
public enum CaloricLevel { DIET, NORMAL, FAT }
Map<CaloricLevel, List<Dish>> dishesByCaloricLevel = Dish.getDishes().stream().collect(
Collectors.groupingBy(dish -> {
if (dish.getCalories() <= 400) return CaloricLevel.DIET;
else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL;
else return CaloricLevel.FAT;
} ));
//{MEAT=[pork, beef], OTHER=[french fries, pizza]}
final Map<Dish.Type, List<Dish>> collect = Dish.getDishes().stream()
.filter(dish -> dish.getCalories() > 500)
.collect(groupingBy(Dish::getType));
//{FISH=[], MEAT=[pork, beef], OTHER=[french fries, pizza]}
final Map<Dish.Type, List<Dish>> typeListMap = Dish.getDishes().stream()
.collect(
Collectors.groupingBy(
Dish::getType,
Collectors.filtering(dish -> dish.getCalories() > 500, Collectors.toList())
)
);
Map<Dish.Type, List<String>> dishNamesByType =
Dish.getDishes().stream()
.collect(groupingBy(Dish::getType, mapping(Dish::getName, toList())));
Map<String, List<String>> dishTags = new HashMap<>();
dishTags.put("pork", asList("greasy", "salty"));
dishTags.put("beef", asList("salty", "roasted"));
dishTags.put("chicken", asList("fried", "crisp"));
dishTags.put("french fries", asList("greasy", "fried"));
dishTags.put("rice", asList("light", "natural"));
dishTags.put("season fruit", asList("fresh", "natural"));
dishTags.put("pizza", asList("tasty", "salty"));
dishTags.put("prawns", asList("tasty", "roasted"));
dishTags.put("salmon", asList("delicious", "fresh"));
final Map<Dish.Type, Set<String>> collect = Dish.getDishes().stream()
.collect(groupingBy(Dish::getType, flatMapping(dish -> dishTags.get(dish.getName()).stream(), toSet())));
2.4 多级分组
//多级分组
final Map<Dish.Type, Map<CaloricLevel, List<String>>> collect = Dish.getDishes().stream()
.collect(groupingBy(Dish::getType,
groupingBy(dish -> {
if (dish.getCalories() <= 400) return CaloricLevel.DIET;
else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL;
else return CaloricLevel.FAT;
}, mapping(Dish::getName, toList()))
)
);
//maxBy
final Map<Dish.Type, Optional<Dish>> collect = Dish.getDishes().stream()
.collect(groupingBy(Dish::getType, maxBy(Comparator.comparing(Dish::getCalories))));
//获取 name
final Map<Dish.Type, String> collect = Dish.getDishes().stream()
.collect(groupingBy(Dish::getType,
collectingAndThen(maxBy(Comparator.comparing(Dish::getCalories)), op -> op.orElseThrow().getName())
));
final Map<Dish.Type, Integer> collect = Dish.getDishes().stream()
.collect(groupingBy(Dish::getType, summingInt(Dish::getCalories)));
final Map<Dish.Type, Set<CaloricLevel>> collect = Dish.getDishes().stream()
.collect(groupingBy(Dish::getType,
mapping(dish -> {
if (dish.getCalories() <= 400) return CaloricLevel.DIET;
else if (dish.getCalories() <= 700) return CaloricLevel.NORMAL;
else return CaloricLevel.FAT;
}, toCollection(HashSet::new))));
2.5 分区
//分区
final Map<Boolean, Set<String>> collect = Dish.getDishes().stream()
.collect(partitioningBy(Dish::isVegetarian, mapping(Dish::getName, toSet())));
final Map<Boolean, Map<Dish.Type, List<String>>> collect = Dish.getDishes().stream()
.collect(partitioningBy(Dish::isVegetarian, groupingBy(Dish::getType, mapping(Dish::getName, toList()))));
final Map<Boolean, String> collect = Dish.getDishes().stream()
.collect(partitioningBy(Dish::isVegetarian,
collectingAndThen(
maxBy(Comparator.comparing(Dish::getCalories)),
op -> op.get().getName())
)
);
2.6 求质数与自定义收集器
@Test
public void test(){
long fastest = Integer.MAX_VALUE;
for (int i = 0; i < 10; i++) {
long start = System.currentTimeMillis();
IntStream.rangeClosed(2, 1_000_000).boxed().collect(new PrimeNumberCollector());
long duration = System.currentTimeMillis() - start;
if (fastest > duration) fastest = duration;
}
System.out.println(fastest);
fastest = Integer.MAX_VALUE;
for (int i = 0; i < 10; i++) {
long start = System.currentTimeMillis();
partitionPrimes(1_000_000);
long duration = System.currentTimeMillis() - start;
if (fastest > duration) fastest = duration;
}
System.out.println(fastest);
}
//求质数
public Map<Boolean, List<Integer>> partitionPrimes(int n){
return IntStream.rangeClosed(2, n)
.boxed()
.collect(partitioningBy(this::isPrime));
}
public boolean isPrime(int candidate){
int candidateRoot = (int) Math.sqrt(candidate);
return IntStream.rangeClosed(2, candidateRoot).noneMatch( i -> candidate % i == 0);
}
public static class PrimeNumberCollector implements Collector<Integer, Map<Boolean, List<Integer>>, Map<Boolean, List<Integer>>> {
@Override
public Supplier<Map<Boolean, List<Integer>>> supplier() {
return () -> {
HashMap<Boolean, List<Integer>> hashMap = new HashMap<>();
hashMap.put(true, new ArrayList<>());
hashMap.put(false, new ArrayList<>());
return hashMap;
};
}
@Override
public BiConsumer<Map<Boolean, List<Integer>>, Integer> accumulator() {
return (Map<Boolean, List<Integer>> acc, Integer candidate) -> {
acc.get(isPrime(acc.get(true), candidate)).add(candidate);
};
}
@Override
public BinaryOperator<Map<Boolean, List<Integer>>> combiner() {
return (Map<Boolean, List<Integer>> map1, Map<Boolean, List<Integer>> map2) -> {
map1.get(true).addAll(map2.get(true));
map1.get(false).addAll(map2.get(false));
return map1;
};
}
@Override
public Function<Map<Boolean, List<Integer>>, Map<Boolean, List<Integer>>> finisher() {
return Function.identity();
}
@Override
public Set<Characteristics> characteristics() {
return Collections.unmodifiableSet(EnumSet.of(Characteristics.IDENTITY_FINISH));
}
}
public static boolean isPrime(List<Integer> primes, int candidate) {
int candidateRoot = (int) Math.sqrt(candidate);
return primes.stream()
.takeWhile(i -> i <= candidateRoot)
.noneMatch(i -> candidate % i == 0);
}
output:
PrimeNumberCollector average cost time: 294ms
Normal average cost time: 469ms
3.并行数据处理与性能
3.1 流性能测试
@State(Scope.Thread)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Fork(value = 2, jvmArgs = {"-Xms4G", "-Xmx4G"})
public class ParallelStreamBenchMark {
private static final long N = 10_000_000L;
@Benchmark
public long sequentialSum() {
return Stream.iterate(1L, i -> i + 1).limit(N).reduce(0L, Long::sum);
}
@Benchmark
public long rangedSum(){
return LongStream.rangeClosed(1, N).reduce(0L, Long::sum);
}
@Benchmark
public long parallelRangedSum(){
return LongStream.rangeClosed(1, N).parallel().reduce(0L, Long::sum);
}
@Benchmark
public long iterativeSum() {
long result = 0;
for (long i = 0; i < N; i++) {
result += i;
}
return result;
}
@TearDown(Level.Invocation)
public void tearDown() {
System.gc();
}
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(ParallelStreamBenchMark.class.getSimpleName())
.warmupIterations(5)
.measurementIterations(10)
.build();
new Runner(opt).run();
}
}
output:
Benchmark Mode Cnt Score Error Units
ParallelStreamBenchMark.iterativeSum avgt 20 3.598 ± 0.278 ms/op
ParallelStreamBenchMark.parallelRangedSum avgt 20 0.689 ± 0.066 ms/op
ParallelStreamBenchMark.rangedSum avgt 20 4.004 ± 0.093 ms/op
ParallelStreamBenchMark.sequentialSum avgt 20 88.117 ± 0.679 ms/op
并行处理数据效率要高的多
sequentialSum 效率低的原因是 iterate 过程中有装箱拆箱的操作,及 iterate 很难分成多个块来操作
LongStream.rangeClosed 直接产生原始类型的 long ,没有拆箱装箱的开销,及很容易拆分
3.2 错误的并行
@Test
public void testErrorParallel() {
final long sum = sideEffectSum(10_000_000L);
System.out.println(sum);
}
public long sideEffectSum(long n){
Accumulator accumulator = new Accumulator();
LongStream.rangeClosed(1, n).parallel().forEach(accumulator::add);
return accumulator.total;
}
public static class Accumulator {
public long total = 0L;
public void add(long value) {
total += value;
}
}
正确的结果应该是 50000005000000
,但是这个例子得不到正确的结果,因为 total += value 不是原子操作,多线程时会得到不正确的结果
如果修改成
public static class Accumulator {
public AtomicLong total = new AtomicLong(0);
public void add(long value) {
total.addAndGet(value);
}
}
则会得到正确的结果,但是并行则毫无意义
3.3 适合并行的流数据源
-
ArrayList 极佳
-
IntStream.range 极佳
-
HashSet 好
-
TreeSet 好
-
iterate 差
-
LinkedList 差
4.分支合并
类似于分治算法,将大任务分解成多个小任务,最后合并多个小任务的结果,得到最终的结果。
public class ForkJoinSumCalculator extends RecursiveTask<Long> {
private final long[] numbers;
private final int start;
private final int end;
public static final long THRESHOLD = 10_000;
public ForkJoinSumCalculator(long[] numbers) {
this(numbers, 0, numbers.length);
}
public ForkJoinSumCalculator(long[] numbers, int start, int end) {
this.numbers = numbers;
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
int length = end - start;
if (length < THRESHOLD) {
return computeSequentially();
}
ForkJoinSumCalculator leftFork = new ForkJoinSumCalculator(numbers, start, start + length / 2);
leftFork.fork();
ForkJoinSumCalculator rightFork = new ForkJoinSumCalculator(numbers, start + length / 2, end);
final Long rightResult = rightFork.compute();
final Long leftResult = leftFork.join();
return rightResult + leftResult;
}
private long computeSequentially() {
long sum = 0;
for (int i = start; i < end; i++) {
sum += numbers[i];
}
return sum;
}
public static long forkJoinSum(long n) {
long[] numbers = LongStream.rangeClosed(1, n).toArray();
ForkJoinTask<Long> task = new ForkJoinSumCalculator(numbers);
return new ForkJoinPool().invoke(task);
}
}
测试
private static final long N = 10_000_000L;
@Benchmark
public long forkJoin(){
return ForkJoinSumCalculator.forkJoinSum(N);
}
output:
Benchmark Mode Cnt Score Error Units
ParallelStreamBenchMark.forkJoin avgt 20 26.246 ± 4.635 ms/op
ParallelStreamBenchMark.iterativeSum avgt 20 3.709 ± 0.186 ms/op
ParallelStreamBenchMark.parallelRangedSum avgt 20 0.730 ± 0.039 ms/op
ParallelStreamBenchMark.rangedSum avgt 20 4.250 ± 0.217 ms/op
ParallelStreamBenchMark.sequentialSum avgt 20 93.359 ± 5.364 ms/op
性能还是比较差,书上说是因为必须先要把整个数字流都放进一个long[],之后才能在ForkJoinSumCalculator任务中使用它
分支/合并框架工程用一种称为工作窃取(work stealing)的技术来解决这个问题。在实际应用中,这意味着这些任务差不多被平均分配到ForkJoinPool中的所有线程上。每个线程都为分配给它的任务保存一个双向链式队列,每完成一个任务,就会从队列头上取出下一个任务开始执行。基于前面所述的原因,某个线程可能早早完成了分配给它的所有任务,也就是它的队列已经空了,而其他的线程还很忙。这时,这个线程并没有闲下来,而是随机选了一个别的线程,从队列的尾巴上“偷走”一个任务。这个过程一直继续下去,直到所有的任务都执行完毕,所有的队列都清空。这就是为什么要划成许多小任务而不是少数几个大任务,这有助于更好地在工作线程之间平衡负载。
5.Spliterator
统计文件中单词数,统计文本中字符数为 21444526
,非空格字符数为 3364711
public class WordCounter {
private final int counter;
private final boolean lastSpace;
public WordCounter(int counter, boolean lastSpace) {
this.counter = counter;
this.lastSpace = lastSpace;
}
public WordCounter accumulate(Character character) {
if (Character.isWhitespace(character)) {
return lastSpace ? this : new WordCounter(counter, true);
} else {
return lastSpace ? new WordCounter(counter + 1, false) : this;
}
}
public WordCounter combine(WordCounter wordCounter){
return new WordCounter(counter + wordCounter.counter, wordCounter.lastSpace);
}
public int getCounter() {
return counter;
}
}
public class WordCounterSpliterator implements Spliterator<Character> {
private final String string;
private int currentChar = 0;
public WordCounterSpliterator(String string) {
this.string = string;
}
@Override
public boolean tryAdvance(Consumer<? super Character> action) {
action.accept(string.charAt(currentChar++));
return currentChar < string.length();
}
@Override
public Spliterator<Character> trySplit() {
int currentSize = string.length() - currentChar;
if (currentSize < 10) {
return null;
}
for (int splitPos = currentSize / 2 + currentChar; splitPos < string.length(); splitPos++) {
if (Character.isWhitespace(string.charAt(splitPos))) {
Spliterator<Character> spliterator = new WordCounterSpliterator(string.substring(currentChar, splitPos));
currentChar = splitPos;
return spliterator;
}
}
return null;
}
@Override
public long estimateSize() {
return string.length() - currentChar;
}
@Override
public int characteristics() {
return ORDERED + SIZED + SUBSIZED + NONNULL + IMMUTABLE;
}
}
@State(Scope.Thread)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Fork(value = 2, jvmArgs = {"-Xms4G", "-Xmx4G"})
public class WordCountBenchMark {
private String data;
@Benchmark
public int commonCount() throws IOException {
int counter = 0;
boolean lastSpace = false;
for (char c : data.toCharArray()) {
if (Character.isWhitespace(c)) {
lastSpace = true;
} else {
if (lastSpace) counter++;
lastSpace = false;
}
}
return counter;
}
@Benchmark
public int spliterator(){
Spliterator<Character> spliterator = new WordCounterSpliterator(data);
Stream<Character> stream = StreamSupport.stream(spliterator, true);
final WordCounter reduce = stream.reduce(new WordCounter(0, false), WordCounter::accumulate, WordCounter::combine);
return reduce.getCounter();
}
@Benchmark
public int countWords(){
final Stream<Character> characterStream = IntStream.range(0, data.length()).mapToObj(data::charAt);
final WordCounter reduce = characterStream.reduce(new WordCounter(0, false), WordCounter::accumulate, WordCounter::combine);
return reduce.getCounter();
}
@Setup
public void readString() throws IOException {
final InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream("sources.txt");
InputStreamReader reader = new InputStreamReader(inputStream);
char[] chars = new char[1024];
int count = 0;
StringBuilder stringBuilder = new StringBuilder();
while ((count = reader.read(chars)) != -1) {
stringBuilder.append(Arrays.copyOfRange(chars, 0, count));
}
inputStream.close();
reader.close();
data = stringBuilder.toString();
}
@TearDown(Level.Invocation)
public void tearDown() {
System.gc();
}
public static void main(String[] args) throws RunnerException {
Options opt = new OptionsBuilder()
.include(WordCountBenchMark.class.getSimpleName())
.warmupIterations(5)
.measurementIterations(10)
.build();
new Runner(opt).run();
}
}
output:
Benchmark Mode Cnt Score Error Units
WordCountBenchMark.commonCount avgt 20 78.628 ± 0.752 ms/op
WordCountBenchMark.countWords avgt 20 193.506 ± 10.918 ms/op
WordCountBenchMark.spliterator avgt 20 64.131 ± 3.657 ms/op